

SENIOR CERTIFICATE EXAMINATIONS/ NATIONAL SENIOR CERTIFICATE EXAMINATIONS

INFORMATION TECHNOLOGY P1

2023

MARKS: 150

TIME: 3 hours

This question paper consists of 24 pages, 2 data pages and 2 blank pages for planning.

INSTRUCTIONS AND INFORMATION

- 1. This question paper is divided into FOUR sections. Candidates must answer ALL the questions from all FOUR sections.
- 2. Two blank pages have been provided at the end of the question paper which may be used for planning purposes.
- 3. The duration of this examination is three hours. Because of the nature of this examination, it is important to note that you will not be permitted to leave the examination room before the end of the examination session.
- 4. This question paper is set with programming terms that are specific to Delphi programming language. The Delphi programming language must be used to answer the questions.
- 5. Make sure that you answer the questions according to the specifications that are given in each question. Marks will be awarded according to the set requirements.
- 6. Answer only what is asked in each question. For example, if the question does not ask for data validation, no marks will be awarded for data validation.
- 7. Your programs must be coded in such a way that they will work with any data and not just the sample data supplied or any data extracts that appear in the question paper.
- 8. Routines, such as search, sort and selection, must be developed from first principles. You may NOT use the built-in features of the Delphi programming language for any of these routines.
- 9. All data structures must be defined by you, the programmer, unless the data structures are supplied.
- 10. You must save your work regularly on the disk/CD/DVD/flash disk you have been given, or on the disk space allocated to you for this examination session.
- 11. Make sure that your examination number appears as a comment in every program that you code, as well as on every event indicated.
- 12. If required, print the programming code of all the programs/classes that you completed. Your examination number must appear on all the printouts. You will be given half an hour printing time after the examination session.
- 13. At the end of this examination session, you must hand in a disk/CD/DVD/ flash disk with all your work saved on it OR you must make sure that all your work has been saved on the disk space allocated to you for this examination session. Ensure that all files can be read.

14. The files that you need to complete this question paper have been provided to you on the disk/CD/DVD/flash disk or on the disk space allocated to you. The files are provided in the form of password-protected executable files.

Do the following:

- Double click on the following password-protected executable file: DataJun2023.exe.
- Click on the 'Extract' button.
- Enter the following password: **E#Homes%2023**

Once extracted, the following list of files will be available in the folder DataJun2023:

Question1:

Question1 P.dpr Question1 P.dproj Question1 P.res Question1 U.dfm Question1 U.pas Words.txt

Question2:

ConnectDB U.pas Question2 P.dpr Question2 P.dproj Question2 P.res Question2 U.dfm Question2 U.pas

SmartDevicesDB - Copy.mdb

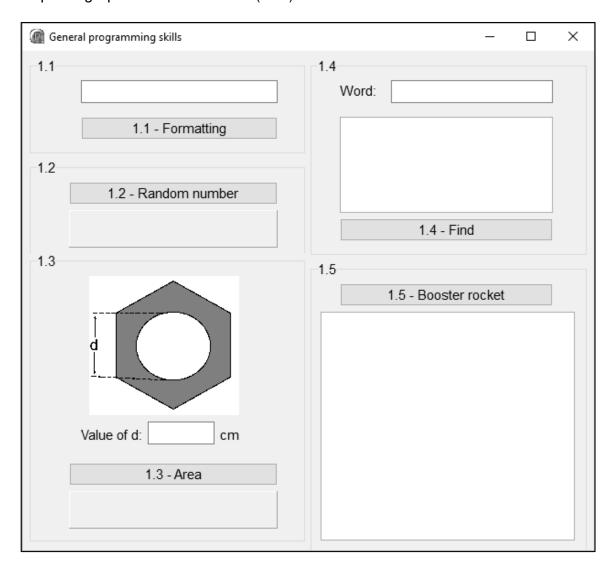
SmartDevicesDB.mdb

Question3:

log.txt Question3 P.dpr Question3 P.dproj Question3 P.res Question3 U.dfm Question3 U.pas SmartSwitch U.pas

Question4:

Question4 P.dpr Question4 P.dproj Question4 P.res Question4 U.dfm Question4 U.pas

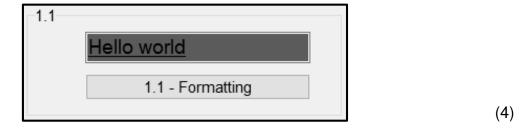

SECTION A

QUESTION 1: GENERAL PROGRAMMING SKILLS

Do the following:

- Open the incomplete program in the **Question 1** folder.
- Enter your examination number as a comment in the first line of the **Question1 U.pas** file.
- Compile and execute the program. The program has no functionality currently.

Example of graphical user interface (GUI):

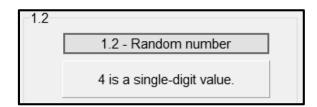

 Complete the code for each section of QUESTION 1, as described in QUESTION 1.1 to QUESTION 1.5 that follow.

1.1 Button [1.1 - Formatting]

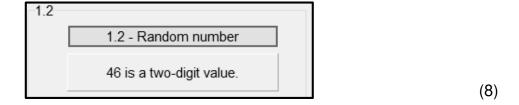
Write code to change the content and appearance of the edit box **edtQ1_1** as follows when the **btnQ1_1** button is clicked:

- The font size of the text must be 14 pt.
- The words 'Hello world' must appear as text in the edtQ1_1 edit box.
- The text must be underlined.
- The background colour of the **edtQ1_1** component must be green.

Example of output:

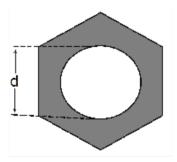


1.2 **Button [1.2 - Random number]**


Write code to do the following:

- Generate a random integer between 1 and 99 (inclusive of these values).
- Determine whether the number that has been generated is a single digit or a two-digit number.
- Display the number and result in the panel **pnlQ1_2** as shown in the examples below.

Example of output if the number 4 was generated:



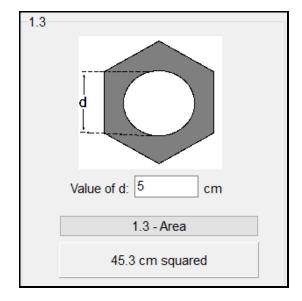
Example of output if the number 46 was generated:

1.3 **Button [1.3 - Area]**

Shown below is a diagram of a nut, made up of a hexagon and a circle. The diameter (d) of the circle has the same length as the side of the hexagon.

The shaded area in the diagram is calculated using the following formula:

Shaded area =
$$\left(\frac{3\sqrt{3}}{2}\right)d^2 - \pi \left(\frac{d}{2}\right)^2$$


where $\,\mathrm{d}\,$ is the length of one side of the hexagon and $\,\mathrm{d}\,$ is also the diameter of the circle.

The user is required to enter the value of d in the edit box edtQ1_3.

Write code to do the following:

- Extract the value of d from the edit box edtQ1_3.
- Use the given formula to calculate the area of the shaded part of the diagram provided above.
- Display the area of the shaded part, rounded to ONE decimal place, on the panel **pnlQ1** 3.

Example of input and output:

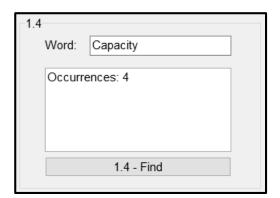
(8)

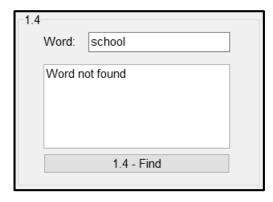
1.4 **Button [1.4 - Find]**

A text file **Words.txt** containing a list of words has been supplied. The program must count the number of times a word entered by the user occurs in the text file.

Example of the first five lines of the text file **Words.txt**:

accessory archive bandwidth capacity bus


The user must enter the word to be counted in the edit box edtQ1 4.


Code has been provided to open the text file **Words.txt** for reading.

Write code to do the following:

- Extract the word that was entered in the edit box edtQ1_4.
- Count the number of times the word entered occurs in the file, regardless of whether the word was entered in small letters or capital letters.
- If the word occurs in the text file, display the number of occurrences in the redQ1_4 rich edit component.
- If the word does NOT occur in the text file, display the message 'Word not found' in the **redQ1_4** rich edit component.

Two examples of input and output:

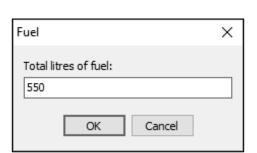
(11)

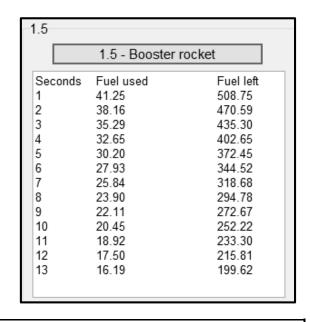
1.5 **Button [1.5 - Booster rocket]**

A booster rocket uses 7,5% of its fuel per second from lift-off. The rocket shuts down when the fuel capacity is below 200 litres.

Do the following:

Convert the algorithm on the next page into programming code to calculate and display the seconds travelled, the fuel used and the fuel left per second until the rocket shuts down.


Algorithm


- 1. Enter the total litres of fuel before lift-off (use an input box for input)
- 2. Assign the value of total litres of fuel to a variable for fuel left
- 3. Initialise a counter for number of seconds
- 4. While fuel left is more than or equal to 200
- 5. Increment counter by one
- 6. Calculate fuel used (7,5% of fuel left)
- 7. Subtract fuel used from fuel left
- 8. Display counter, fuel used and fuel left
- 9. End while loop

NOTE:

- Code is provided to display the headings in the rich edit redQ1_5.
- The amount of fuel used per second and the amount of fuel left must be formatted to TWO decimal places, as shown in the example of output.

Example of the input of 550 litres of fuel and the output:

(9)

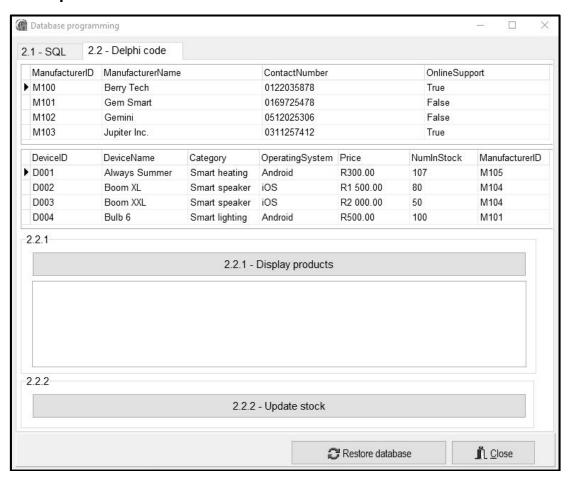
- Enter your examination number as a comment in the first line of the program file.
- Save your program.
- Print the code if required.

TOTAL SECTION A: 40

SECTION B

QUESTION 2: DATABASE PROGRAMMING

Smart home devices are becoming more popular among people that have access to fast reliable internet connections.


A database called **SmartDevicesDB.mdb** has been developed and contains information about the different manufacturers of smart devices and the stock available of the different devices.

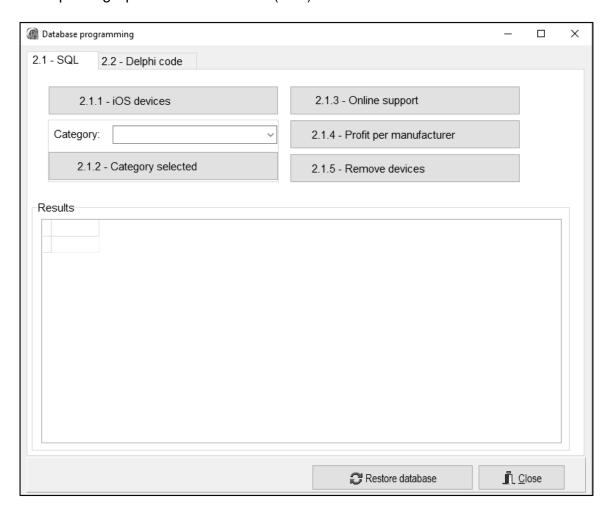
The **SmartDevicesDB.mdb** database contains two tables called **tblManufacturers** and **tblDevices**.

The data pages attached at the end of the question paper provide information on the design and contents of the database.

Do the following:

- Open the incomplete project file called Question2_P.dpr in the Question 2 folder.
- Enter your examination number as a comment in the first line of the Question2_U.pas unit file.
- Compile and execute the program. The program has no functionality currently. The
 contents of the tables are displayed as shown below on the selection of tab sheet
 2.2 Delphi code.

- Follow the instructions below to complete the code for each section as described in QUESTION 2.1 and QUESTION 2.2.
- Use SQL statements to answer QUESTION 2.1 and Delphi code to answer QUESTION 2.2.


NOTE:

- The 'Restore database' button is provided to restore the data contained in the database to the original content.
- The content of the database is password-protected, i.e. you will NOT be able to gain direct access to the content of the database using Microsoft Access.
- Code is provided to link the GUI components to the database. Do NOT change any
 of the code provided.
- TWO variables are declared as public variables, as described in the table below:

Variable	Data type	Description
tblManufacturers	TADOTable	Refers to the table tblManufacturers
tblDevices	TADOTable	Refers to the table tblDevices

2.1 **Tab sheet [2.1 - SQL]**

Example of graphical user interface (GUI) for QUESTION 2.1:

NOTE: Code to execute the SQL statements and display the results of the queries is provided. The SQL statements assigned to the variables **sSQL1**, **sSQL2**, **sSQL3**, **sSQL4** and **sSQL5** are incomplete.

Complete the SQL statements to perform the tasks described in QUESTION 2.1.1 to QUESTION 2.1.5 below.

2.1.1 **Button [2.1.1 - iOS devices]**

Display the **DeviceID** and **DeviceName** of all devices in the **tblDevices** table, that use the iOS operating system.

Example of output of the first five records:

DeviceID	DeviceName
D005	Core Sound
D028	Ultra Light
D002	Boom XL
D014	Lock Smart
D021	Sound Wave

(3)

2.1.2 **Button [2.1.2 - Category selected]**

The user must select a device type from the combo box cmbQ2_1_2. Code has been provided to extract and store the device type selected in a variable sDeviceType.

Display the **DeviceName**, **Category** and **NumInStock** of all devices where the **Category** field contains the device type selected from the combo box.

Example of output if TV was selected as a device type:

DeviceName	Category	NumlnStock
Crystal TV	Smart TV	389
Look TV	Smart TV	91
View Tube	Smart TV	204
Telly Wiz	Smart TV	46

(3)

2.1.3 **Button [2.1.3 - Online support]**

Display the **DeviceName**, **Category** and **OperatingSystem** of all devices that receive online support from the manufacturer. The results must be sorted in alphabetical order according to the **DeviceName**. See the next page.

Example of output of the first five records:

DeviceName	Category	OperatingSystem
Always Summer	Smart heating	Android
Core Sound	Smart speaker	iOS
Crystal TV	Smart TV	HarmonyOS
Ice Box	Smart refrigerator	Android
Key Away	Smart door locks	HarmonyOS

(6)

2.1.4 **Button [2.1.4 - Profit per manufacturer]**

All the products in stock are available to be purchased at a clearance sale. The price shown in the **tblDevices** table refers to the selling price of the product. The profit after selling the stock is 60% of the selling price. The total profit made by each manufacturer must be calculated assuming that all products will be sold at the sale.

Write code to display the **ManufacturerID** and the total profit in a new field called **Profit**, formatted to currency.

Example of output:

ManufacturerID	Profit
M100	R672 900.00
M101	R438 000.00
M102	R1 090 502.40
M103	R4 382 044.20
M104	R265 860.00
M105	R859 089.00
M106	R475 419.60

(6)

2.1.5 **Button [2.1.5 - Remove devices]**

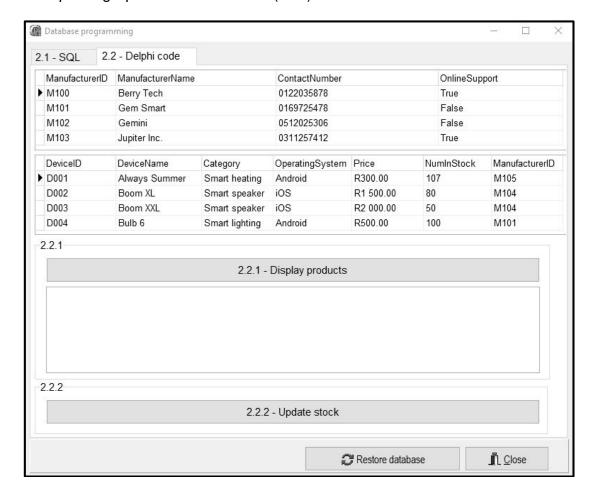
The entire range of smart speakers, manufactured by Mobile Comp with ManufacturerID M104, have been recalled due to a fault during the manufacturing process.

Remove all records of smart speakers that were manufactured by **ManufacturerID M104**, from the **tblDevices** table.

NOTE: Code has been provided to display a message to indicate the

number of records that have been deleted.

Example of output:


(4)

2.2 Tab sheet [2.2 - Delphi code]

NOTE:

- Use ONLY Delphi programming code to answer QUESTION 2.2.1 and QUESTION 2.2.2.
- NO marks will be awarded for SQL statements in QUESTION 2.2.

Example of graphical user interface (GUI) for QUESTION 2.2:

2.2.1 Button [2.2.1 - Display products]

Retailers want to see which products are made by each manufacturer.

Code has been provided to clear the content in the redQ2_2_1 component.

Write code to do the following:

 Display the manufacturer name and contact number in the following format:

<Manufacturer Name>: <Contact Number>

Display the following headings for each manufacturer:

'Device name' 'In stock' 'Price'

• Display all the devices made by each manufacturer using the appropriate headings.

Example of output for the first two manufacturers (Berry Tech and Gem Smart):

Berry Tech: 0122035878		
Device name	In stock	Price
Key Away	240	R600.00
Look TV	91	R10 000.00
Stay Safe 2	150	R450.00
Gem Smart: 0169725478		
Device name	In stock	Price
Bulb 6	100	R500.00
Freeze 3	2	R12 000.00
Noise Maker	296	R1 000.00
Time Keeper	80	R4 500.00

(12)

2.2.2 Button [2.2.2 -Update stock]

When devices are sold, the number in stock must be decreased in the table **tblDevices**.

The user must select the record of the device to be sold from the **tblDevices** table in the DBGrid component **dbgDevices**.

Write code to do the following:

- Provide an input dialog box for the user to enter the number of devices to be sold for the record selected.
- If stock is sufficient, decrease the number in stock for the selected item with the number that was entered. If stock is insufficient, display a suitable message.

15 SC/NSC

Example of output if the 'Bulb 6' item had been selected **before** any items were sold:

DeviceID	DeviceName	Category	OperatingSystem	Price	NumlnStock	ManufacturerID
D004	Bulb 6	Smart lighting	Android	R500.00	100	M101

Example of output if the value of 15 was entered and 15 units of the selected item were sold:

DeviceID	DeviceName	Category	OperatingSystem	Price	NumlnStock	ManufacturerID
D004	Bulb 6	Smart lighting	Android	R500.00	85	M101

Example of output if the 'Bulb 6' item had been selected **before** any items were sold:

DeviceID	DeviceName	Category	OperatingSystem	Price	NumlnStock	ManufacturerID
D004	Bulb 6	Smart lighting	Android	R500.00	100	M101

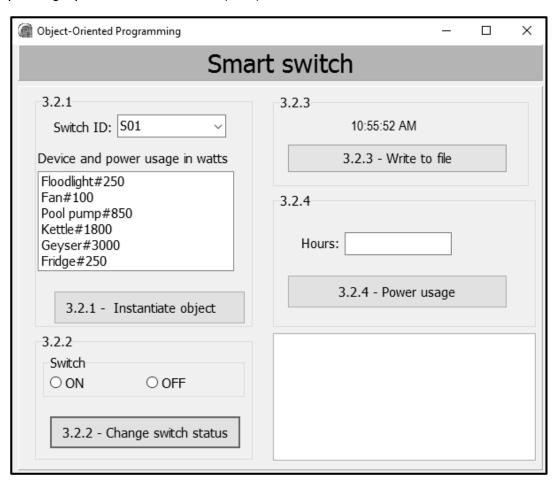
Example of output if the value of 101 was entered for units to be sold:

(6)

- Enter your examination number as a comment in the first line of the program file.
- Save your program.
- Print the code if required.

TOTAL SECTION B: 40

SECTION C


QUESTION 3: OBJECT-ORIENTATED PROGRAMMING

Smart switches have been installed to monitor and automate home devices. The program to be developed will determine the device power usage of the switch and the user will have the option of switching the device ON or OFF.

Do the following:

- Open the incomplete program in the Question 3 folder.
- Open the incomplete object class SmartSwitch_U.pas.
- Enter your examination number as a comment in the first line of both the **Question3 U.pas** file and the **SmartSwitch U.pas** file.
- Compile and execute the program. The program has limited functionality currently.

Example of graphical user interface (GUI):

- Complete the code as specified in QUESTION 3.1 and QUESTION 3.2 below.
- 3.1 The given incomplete object class (**TSmartSwitch**) contains:
 - The declaration of four attributes which describe a **SmartSwitch** object
 - Code for a method called **determineSwitchStatus**

(5)

(3)

The attributes for a **SmartSwitch** object have been declared as follows:

Attribute	Туре	Description
fSwitchID	String	The identifying code of the switch, e.g. S01
fDevice	String	The name of the device that will be used on the switch
fPowerUsage	Integer	The amount of energy/power in watts used by the device
fSwitchStatus	Boolean	The current status of the switch, either True for ON or False for OFF

NOTE: You are NOT allowed to add any additional attributes or user-defined methods, unless it is explicitly stated in the question.

Complete the code in the object class as described in QUESTION 3.1.1 to QUESTION 3.1.5 below.

- 3.1.1 Write code for a **constructor** method that will receive the switch ID, the name of the device and the power usage of the switch as parameters. Assign the parameter values to the respective attributes. Allocate the value 'false' to the **fSwitchStatus** attribute.
- 3.1.2 Write code for an accessor method called **getSwitchID** to return the **fSwitchID** attribute. (2)
- 3.1.3 Write code for a method called **energyUsed** to receive the number of hours (as an integer) that the device was switched on, as a parameter. Use the formula below to calculate and return the amount of energy (kilowatt-hour (kWh)) used by the device.

Energy used =
$$\frac{PowerUsage * Hours}{1000}$$
 (4)

- 3.1.4 Write code for a mutator method called **setSwitchStatus** which can be used to switch the device ON or OFF. The method must receive a Boolean value as a parameter and set the **fSwitchStatus** attribute to the value received.
- 3.1.5 Write code for a **toString** method to return a string with all the attributes of the object in the following format:

Switch ID: <SwitchID>

Device: <Device>

Power usage: <PowerUsage> W
Switch status: <ON> or <OFF>

Call the provided method **determineSwitchStatus** to determine if the switch is ON or OFF. (4)

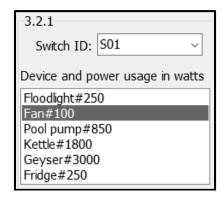
3.2 An incomplete program, **Question3_P**, has been supplied in the **Question 3** folder. The program contains code for the object class to be accessible and declares an object variable called **objSmartSwitch**.

Write code to perform the tasks described in QUESTION 3.2.1 to QUESTION 3.2.4 below.

Code has been provided in each of the buttons to clear the **redQ3** rich edit component.

3.2.1 Button [3.2.1 - Instantiate object]

A list box **IstQ3_2_1** contains devices and their power usage in the following format:


<Device>#<Power usage in watts>

The user needs to select a switch ID from the combo box **cmbQ3_2_1** and any device from the list box **lstQ3_2_1**.

Write code to do the following:

- Extract the switch ID from the combo box cmbQ3_2_1.
- Extract the name of the device and the power usage in watts from the list box **IstQ3_2_1**. Separate the device from the power usage.
- Use the switch ID, name of the device and power usage to instantiate a new **SmartSwitch** object.
- Call the toString method to display the information of the SmartSwitch object in the rich edit redQ3.

Example of input:

Example of output after instantiation of the object:

Switch ID: S01 Device: Fan Power usage: 100 W Switch status: OFF

Copyright reserved Please turn over

(8)

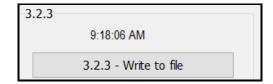
3.2.2 Button [3.2.2 - Change switch status]

Use the radio group **rgpQ3_2_2** to select the switch to be ON or OFF.

Write code to do the following:

- Call the setSwitchStatus method using the value selected from the radio group as an argument. The value ON represents True and the value OFF represents False.
- Display the ID and the status of the objSmartSwitch object in the rich edit redQ3.

Example of input if the 'ON' option has been selected for the fan device:


Example of output if the 'ON' option has been selected for the fan device:

S03: ON (5)

3.2.3 **Button [3.2.3 - Write to file]**

A text file called **log.txt** keeps a record of the date, time, switch ID and the status of the switch.

Code has been provided in the **FormCreate** event to show the current time in the lable **IbITime**.

Write code to do the following:

- Open the text file log.txt to add a line of text.
- Add a line of text to the file which contains the current system date, current system time, the switch ID and the switch status in the following format:

Current date, Current time, Switch ID#Switch status

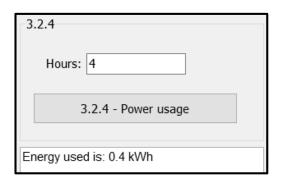
Example of output to the file if the current system date and time is 23 May 2023, 9:18:06 AM:

23/05/2023,9:18:06 AM,S03#ON

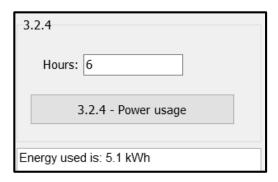
NOTE: A date function must be used to extract the current system date. The format of the date and time are dependent on the regional settings of your computer, which may differ from the example output provided.

(6)

3.2.4 **Button [3.2.4 - Power usage]**


The switch will be left on for a specific number of hours.

The user must enter the number of hours in the edit box edtQ3 2 4.


Write code to do the following:

- Obtain the number of hours that was entered from the edit box edtQ3 2 4.
- Call the energyUsed method using the number of hours that was entered as an argument.
- Display a suitable message in the rich edit redQ3 to indicate the amount of energy used in kWh.

Example of input and output if the device selected is a fan 100 W and the number of hours is 4:

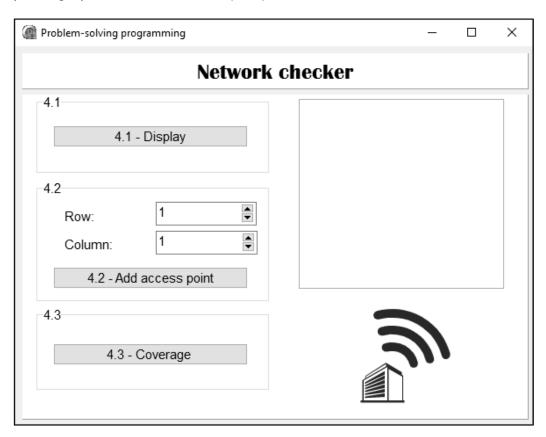
Example of input and output if the device selected is a pool pump of 850 W and the number of hours is 6:

(3)

- Enter your examination number as a comment in the first line of the object class and the form class.
- Save your program.
- Print the code in the object class and the form class if required.

TOTAL SECTION C: 40

SECTION D


QUESTION 4: PROBLEM-SOLVING PROGRAMMING

You are developing a program to test the wireless network for a college campus. The area of the campus has been broken up into a grid where access points can be added and Wi-Fi coverage will be determined.

Do the following:

- Open the incomplete program in the **Question 4** folder.
- Enter your examination number as a comment in the first line of the **Question4 U.pas** file.
- Compile and execute the program. The program has no functionality currently.

Example of graphical user interface (GUI):

The following two-dimensional array **arrNetwork** has been provided. The array represents the wireless network of the college campus broken up into a grid with 5 rows and 6 columns.

```
arrNetwork: array [1 .. 5, 1 .. 6] of char =

(('_','A','_','_','_','_','_'),

('_','_','_','_','_','_'),

('_','_','_','_','_','_'),

('_','A','_','_','_','_'));
```

The following table contains the descriptions of the symbols used in the array:

Symbol	Description
Letter ('A')	Access point
Underscore ('_')	Empty space

Complete the code for each section of QUESTION 4, as described in QUESTION 4.1 to QUESTION 4.3 below.

4.1 **Button [4.1 - Display]**

Write code to display the provided array **arrNetwork** in the rich edit **redQ4**. The row and column headings representing the wireless network of the college campus must be displayed as shown in the example of output.

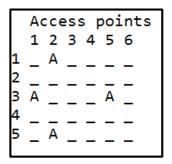
Example of output:

(7)

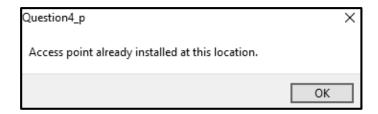
4.2 Button [4.2 - Add access point]

The program must be able to capture the addition of an access point to the campus network at an available space in the grid. A maximum of three access points in a row is allowed.

The user must select the row and column values from the spin edits sedQ4_2_Row and sedQ4_2_Col where the access point is to be added.


Write code to do the following:

- Extract the row and column values selected for the location of the access point.
- Add an access point to the location in arrNetwork if there is no access point at that location and the total number of access points in that row does not exceed two.


Display an appropriate message if:

- There is already an access point at the specific location
- The row already contains more than two access points

Example of output if the selected row is 3 and the selected column is 1:

Example of output if the selected row is 3 and the selected column is 5 and there is already an access point at this location:

Example of output if the user attempts to add an access point in a row that already has 3 access points:

(10)

4.3 **Button [4.3 - Coverage]**

A grid is used to determine the blocks/locations at the campus that will have coverage and those that will not have coverage. Each access point (A) has the capacity to provide a signal to all the blocks/locations around the access point. The blocks/locations covered per access point will be marked with the asterisk ('*') character.

Example:

* * *

* A *

* * *

Write code to do the following:

- Add coverage symbols (*) around all the access points in the campus network saved in array arrNetwork.
- Display array arrNetwork after the coverage symbols have been added.

Example of output:

Access points
1 2 3 4 5 6
1 * A * _ _ _ _
2 * * * * * * *
3 A * _ * A *
4 * * * * * *
5 * A * _ _ _ _

(13)

- Enter your examination number as a comment in the first line of the program file.
- Save your program.
- Print the code if required.

TOTAL SECTION D: 30
GRAND TOTAL: 150

INFORMATION TECHNOLOGY P1

DATABASE INFORMATION FOR QUESTION 2:

The design of the database tables is as follows:

Table: tblManufacturers

This table contains the details of the manufacturers.

Field name	Data type	Description
ManufacturerID	Text (5)	Unique ID of each manufacturer
ManufacturerName	Text (25)	Name of each manufacturer
ContactNumber	Text (10)	The contact number of each manufacturer
OnlineSupport	Yes/No	The value 'true' to indicate that online support will be provided; 'false' if not

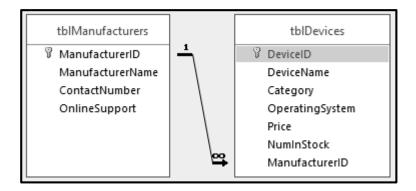
Example of the first seven records of the **tblManufacturers** table:

ManufacturerID 🕶	ManufacturerName -	ContactNumber -	OnlineSupport 🕶
M100	Berry Tech	0122035878	
M101	Gem Smart	0169725478	
M102	Gemini	0512025306	
M103	Jupiter Inc.	0311257412	\square
M104	Mobile Comp	0412258756	
M105	Smart Computing	0169632587	\square
M106	Tech Wiz	0412224568	

Table: tblDevices

This table contains information on the devices made by each manufacturer.

Field name	Data type	Description		
DeviceID	Text (10)	Unique ID for each device		
DeviceName	Text (20)	Unique name for each device		
Category	Text (20)	Category of each device: smart watch, smart lighting, smart TV, smart speaker, smart refrigerator, smart door lock, smart heating		
OperatingSystem	Text(15)	The operating system used to run and connect the manufacturer devices		
Price	Currency	The selling price of each device		
NumInStock	Number	The amount of stock available for each device		
ManufacturerID	Text (5)	ID of the manufacturer of each device		


Example of the first ten records of the **tblDevices** table:

DeviceID -	DeviceName -	Category -	OperatingSystem -	Price -	NumInStock -	ManufacturerID -
D001	Always Summer	Smart heating	Android	R300.00	107	M105
D002	Boom XL	Smart speaker	iOS	R1 500.00	80	M104
D003	Boom XXL	Smart speaker	iOS	R2 000.00	50	M104
D004	Bulb 6	Smart lighting	Android	R500.00	100	M101
D005	Core Sound	Smart speaker	iOS	R999.00	425	M106
D006	Crystal TV	Smart TV	HarmonyOS	R13 999.00	389	M103
D007	Flash 4	Smart lighting	iOS	R200.00	313	M104
D008	Freeze 3	Smart refrigerator	Android	R12 000.00	2	M101
D009	Ice Box	Smart refrigerator	Android	R14 999.00	14	M105
D010	Jukebox V3	Smart speaker	iOS	R1 299.00	515	M102

NOTE:

- Connection code has been provided.
- The database is password-protected, therefore you will not be able to access the database directly.

The following one-to-many relationship with referential integrity exists between the two tables in the database:

PLANNING PAGE 1

PLANNING PAGE 2